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We propose a unified physical framework for transport in variably saturated porous media. This approach
allows fluid flow and solute migration to be treated as ensemble averages of fluid and solute particles, respec-
tively. We consider the cases of homogeneous and heterogeneous porous materials. Within a fractal mobile-
immobile continuous time random-walk framework, the heterogeneity will be characterized by algebraically
decaying particle retention times. We derive the corresponding �nonlinear� continuum-limit partial differential
equations and we compare their solutions to Monte Carlo simulation results. The proposed methodology is
fairly general and can be used to track fluid and solutes particles trajectories for a variety of initial and
boundary conditions.
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I. INTRODUCTION

Accurately predicting the spreading of a chemical species
through unsaturated porous materials �i.e., materials with lo-
cally varying fluid content� is key to mastering such techno-
logical challenges as polluted sites remediation, environmen-
tal protection, and waste management �1–6�. The evolution
of the solute concentration profile in the traversed medium
cannot be a priori decoupled from that of the fluid flow,
which is ultimately responsible for the advection and disper-
sion mechanisms of the solutes. Moreover, the effects of the
fluid distribution are often combined with those of spatial
heterogeneities. Such heterogeneities can be present both at
the pore scale �microscopic� and at the Darcy scale �macro-
scopic�. As a consequence, experimental results reported in
literature often show that solutes concentration displays non-
Fickian features, such as breakthrough curves with long tails
and non-Gaussian spatial profiles �6–8�.

In this respect, there exists an increasing need for reliable
numerical techniques to tackle flow and transport problems.
In this work, we address the issue of determining the fluid
content and the solute concentration profiles within unsatur-
ated homogeneous as well as heterogeneous media by resort-
ing to a random-walk approach. Random walks are exten-
sively used to describe solutes transport in saturated media
�9�, although their application to unsaturated flows appears to
be somehow neglected �10�. While complementing each
other, the random walk and the continuum-limit approaches
display specific advantages and disadvantages. Random
walks, for instance, do not introduce the spurious numerical
dispersion typical of Eulerian �continuum� numerical
schemes �9–11�. As such, random walks are particularly well
suited to deal with unsaturated materials, where sharp con-
trasts between stagnant and fluid-saturated regions, or at
macroscopic heterogeneity interfaces, may give rise to steep
propagating fronts. Eulerian �continuum� numerical schemes,

on the other hand, are generally faster than the corresponding
Monte Carlo simulations.

We begin our analysis by illustrating flow and transport in
homogeneous media and detail how the Richards equation
for the fluid flow and the advection-dispersion equation
�ADE� for the solutes can be recast in a Fokker-Planck equa-
tion �FPE� form. The FPE governs the probability density
�pdf� of finding a walker �a fluid or solute parcel, respec-
tively� at a given position at a given time. The central idea is
that these walkers perform stochastic trajectories in the tra-
versed medium. Taking the ensemble average of the fluid and
solute parcel trajectories yields the desired macroscopic
quantities, i.e., the fluid content and solutes concentration
profiles. As the fluid movement and the solute transport are
�nonlinearly� coupled via the macroscopic governing equa-
tions, the underlying stochastic trajectories also display a
nonlinear coupling. On the other hand, the homogeneity hy-
pothesis ensures that the trajectories carry no memory of the
past, so that the particles dynamics is Markovian �12�.

Then, we focus our attention on unsaturated heteroge-
neous materials, where non-Fickian behaviors are enhanced
by the interplay between nonlinearities in the flow patterns
and complex spatial structures: the relative strength of these
processes determines the precise details of the solutes distri-
bution. We model the effects of complex nonhomogeneous
spatial structures by introducing the possibility of trapping
events between successive particles displacements, as cus-
tomary within a continuous time random-walk �CTRW� ap-
proach �13–15�. The resulting broad distribution of waiting
times at each visited site characterizes the broad velocity
spectrum that is often observed in heterogeneous media.

This paper is organized as follows. In Sec. II, we review
the equations that govern the coupled flow-transport problem
for nonstationary variable-saturation conditions. Then, in
Sec. III, we present a general nonlinear random-walk ap-
proach to the simulation of fluid and contaminant particles in
locally homogeneous media. These simulation schemes are
compared to numerical solutions of the governing equations
in Sec. IV for a variety of initial and boundary conditions.*andrea.zoia@cea.fr
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The case of discontinuous physical properties of the tra-
versed media is addressed as well. In Sec. V, we extend our
results to heterogeneous porous media and derive the corre-
sponding macroscopic governing equations. Finally, conclu-
sions are drawn in Sec. VI.

II. GOVERNING EQUATIONS IN UNSATURATED
HOMOGENEOUS MEDIA

In the following, we shall briefly review the equations that
govern nonstationary flow-transport processes in unsaturated
homogeneous porous media. Consider a vertical column of
length � and radius r�� so that the flow-transport process
can be considered one dimensional along the longitudinal
direction. Let the column be filled with a homogeneous po-
rous material and suppose that the medium has an initial
variable saturation. The fluid flow dynamics within such re-
gion can be described in terms of the �dimensionless� volu-
metric fluid content 0�s�x , t��1, which is defined as the
ratio between the volume occupied by the fluid and the total
volume �water, soil and voids� �3,12�. The medium saturation
is then given by the ratio of the volumetric water content and
porosity. When s�x , t�=1 everywhere, the medium is fully
saturated in fluid �to the extent granted by porosity�. The
upper limit to saturation is naturally set by the medium po-
rosity, i.e., by the volume fraction that is actually viable to
the fluid.

The evolution of the volumetric fluid content is ruled by
the continuity equation

�ts�x,t� = − �xjs�x,t� , �1�

provided that the porosity is constant, i.e., the soil skeleton is
rigid �16�. The so-called Buckingham-Darcy flux �or gener-
alized Darcy’s law� js�x , t� �L /T� is provided by the consti-
tutive equation

js�x,t� = K�s��1 − �xh�s�� , �2�

where the quantity K�s� �L /T� is the saturation-dependent
hydraulic conductivity and h�s� �L� is the saturation-
dependent capillary pressure �3,12�. The capillary head de-
pends on soil pore size. In sandy soils with larger pores, the
head will be less than in clay soils with very small pores.
Then, by introducing the capillary diffusivity ��s�
=K�s��h /�s �L2 /T�, we can combine Eqs. �1� and �2� so to
obtain

�ts�x,t� = �x��s��xs�x,t� − �xK�s� . �3�

In this form, Eq. �3� has been first derived by Richards �17�.
Observe that within this framework, one single phase is con-
sidered, i.e., that of the fluid which evolves through the pore
structure of the medium. Other models involve the coexist-
ence of several fluid phases �with exchanges between
phases�, but we do not address this issue here. The Richards
equation has been extensively adopted in describing the dy-
namics of fluid flows during wetting processes in soils �see
the discussion in �16� and references therein�.

Without loss of generality, we can finally put Eq. �3� in
conservative form by conveniently defining a “velocity”
v�s�=K�s� /s �L /T�,

�ts�x,t� = − �x�v�s� − ��s��x�s�x,t� . �4�

The term v�s� plays the role of an effective velocity for the
fluid particles and represents the gravitational contribution to
the flow dynamics. Remark that Eq. �4� is nonlinear, in that
the diffusion ��s� and advection v�s� coefficients depend in
general on s. In some special cases, it is nonetheless possible
to obtain analytical solutions by resorting to the scaled �Bolt-
zmann� variable �=xt−1/2 �16,18�.

Flow dynamics must be supplemented by the initial and
boundary conditions. To set the ideas, as a representative
example, we may impose s�0, t�=1, i.e., we keep the inlet on
the column at a constant full saturation. This condition may
be physically achieved by putting the porous column in con-
tact with a fluid reservoir �infiltration process�. Along the
column, we initially assign a given saturation distribution,
for instance, a constant profile s�x ,0�=s0, for x�0. Finally,
at the outlet of the column, we prescribe a vanishing diffu-
sive flux, �xs�x , t� �x=�=0 �Neumann boundary condition�, i.e.,
a flat concentration profile.

We assume now that a �nonreactive� tracer, e.g., some
chemical species, flows diluted in the fluid which is injected
into the porous column. Provided that the medium is suffi-
ciently homogeneous and that physical-chemical interactions
of the transported species with the porous matrix and prefer-
ential flows can be excluded �19,20�, the solutes dynamics
obeys an ADE with saturation-dependent coefficients

�tsc�x,t� = − �x�u�s� − sD�s��x�c�x,t� , �5�

where c�x , t� is the solutes concentration and s=s�x , t�.
The advection term u�s� is determined by the fluid flow,

namely, u�s�= js�x , t�, whereas the effective dispersion coef-
ficient D�s� accounts for the effects of mechanical dispersion
and molecular diffusion mechanisms �3�. Note that Eq. �5� is
linear, although knowledge of the saturation s�x , t� is re-
quired in order to determine c�x , t�, i.e., problems �5� and �4�
are inherently coupled. Owing to this coupling and to the
nonlinearities, the flow patterns are not homogeneous, so that
the evolution of the solutes dynamics usually displays non-
Fickian features, such as long tails and non-Gaussian shapes.
We will discuss this point in details in the next section. When
the saturation level is uniform within the column, i.e.,
s�x , t�=s0, Eq. �5� reduces to a standard ADE with constant
coefficients and contaminant transport becomes Fickian.

Concerning initial and boundary conditions for the solute
species, in the following, we will assume that contaminant
release occurs within a given time interval t0� t� tc and that
during this time span, the pollutants concentration at the col-
umn inlet has a constant value c0, i.e., c�0, t0� t� tc�=c0.
Such finite-extension contaminant spills are commonly en-
countered in environmental remediation problems �3�. Be-
fore injection, there is no contaminant within the column,
i.e., c�x , t� t0�=0. The boundary condition for the concen-
tration at the outlet is dictated by the outlet boundary for the
flow, i.e., it must be a Neumann boundary condition,
�xc�x , t� �x=�=0.
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III. RANDOM-WALK APPROACH

Flow-transport equations �4� and �5� share a similar struc-
ture and can be both written in conservative form as

�t�p�x,t� = − �x��q − �d�x�p�x,t� �6�

for the evolution of the field p�x , t�. The coefficients �
=��x , t�, q=q�x , t�, and d=d�x , t� are generally space and
time dependent. This conceptual picture allows Eqs. �4� and
�5� to be expediently solved by resorting to a random-walk
formulation. The key idea is to think of the evolving �fluid or
contaminant� plume, whose dynamics is described by Eq.
�6�, as being composed of a large number of particles per-
forming stochastic trajectories in the traversed porous me-
dium. Then, the quantity p�x , t��0 can be given a probabi-
listic interpretation �up to a normalization factor�, i.e., p�x , t�
represents the probability density of finding a walker at a
given position x at time t.

Consider an ensemble of N particles at positions xj�t�, j
=1, . . . ,N. Assume that the stochastic dynamics of each
walker is governed by a Langevin-type equation

xj�t + 	� = xj�t� + A�x,t�	 + �2B�x,t�	
 j , �7�

where A�x , t� is the drift coefficient, representing the average
velocity, B�x , t� is the diffusion coefficient, and 	 a �small�
time step. The quantity 
 j is a white noise with zero mean
and unit variance. The coefficients A�x , t� and B�x , t� com-
pletely define the properties of the microscopic particles dy-
namics. Remark that Eq. �7� describes a Markovian �memo-
ryless� process: although the evolution of a single trajectory
may depend on the others �i.e., the process can in general be
nonlinear�, knowledge of particles positions at time t is suf-
ficient to determine the displacements at the following step
t+	. It can be shown that the ensemble-averaged density
P�x , t� of a particle plume obeying Eq. �7�, i.e.,

P�x,t� = ��
j

��x − xj�t��	 , �8�

satisfies the �in general nonlinear� Fokker-Planck equation
�21�

�tP�x,t� = − �x�A�x,t� − �xB�x,t��P�x,t� . �9�

Nonlinearities arise when A=A�P� and/or B=B�P�, i.e.,
when the coefficients depend on particles concentration.

Then, if we want to identify the walkers in Eq. �7� with
the microscopic dynamics underlying Eq. �6�, we must prop-
erly assign the drift A�x , t� and diffusion B�x , t� of the sto-
chastic process. In other words, we must impose A�x , t� and
B�x , t� so that knowledge of P�x , t� provides information on
the quantity p�x , t�: this in turn establishes a link between the
physical variables ��x , t�, q�x , t�, d�x , t� and the parameters
A�x , t� and B�x , t�.

Letting �21�

A�x,t� = q�x,t� +
1

��x,t�
�x��x,t�d�x,t� �10�

and

B�x,t� = d�x,t� , �11�

it is easy to prove that

p�x,t� = P�x,t�/��x,t� �12�

up to a normalization factor, which provides the desired link.
Let us address Eq. �4� first. In this case, the particles that

stochastically travel in the porous medium represent fluid
parcels that progressively change the saturation distribution
in the traversed region �12�. The nonlinearity of the govern-
ing equation arises from the fact that the advection and dif-
fusion coefficients depend both on s�x , t�. Then, determining
the evolution of the saturation profile at time t+	 requires
preliminarily knowing the saturation profile itself at time t.
In terms of random walks, this implies that particle positions
at the following time step can be updated once the positions
of all the particles at the current time have been determined.
In other words, particle trajectories are correlated via the
saturation, as the advection and diffusion coefficients depend
on the fluid saturation, s. At each time step 	, s�x , t� is first
computed on the basis of particles positions at time t, then
time is updated t= t+	 and particles are displaced. From the
previous considerations �the parameter � is assumed to be
constant and can be simplified�, it follows that

xj
s�t + 	� = xj

s�t� + �s + s
 j , �13�

where

�s = �v�s� + �x��s��	 �14�

and

s = �2��s�	 . �15�

In the hydrodynamic limit 	→0, the ensemble-averaged
fluid parcel profiles Ps�x , t� converge to the solution s�x , t� of
Eq. �4�.

Once s�x , t� has been obtained at each time step, the evo-
lution of the concentration profile in Eq. �5� can be deter-
mined from a second ensemble of particles representing the
pollutant parcels. This �linear� random walk must obey

xj
c�t + 	� = xj

c�t� + �c + c
 j , �16�

where

�c = 
u�s�
s

+
1

s
�xsD�s��	 �17�

and

c = �2D�s�	 . �18�

Finally, we can identify c�x , t�= Pc�x , t� /s�x , t�, where
Pc�x , t� is the ensemble-averaged concentration of the con-
taminant walkers.

In principle, the random-walk schemes defined above can
be used to determine fluid saturation and contaminant con-
centration profiles for an arbitrary choice of the time- and
space-dependent coefficients. In practice, however, because
of the sharp gradients and steep profiles resulting from the
nonlinearities in Eq. �4�, special care is needed in the choice
of the numerical values for the time step, 	. Also, the evalu-

CONTINUOUS-TIME RANDOM-WALK MODEL OF… PHYSICAL REVIEW E 81, 031104 �2010�

031104-3



ation of the space derivatives in the drift terms of the random
walk is ill-defined for abrupt jumps �discontinuities� in the
equations parameters �22–24�. In all such cases, it is conve-
nient to resort to the ad hoc scheme originally proposed in
�22� for particle transport in composite porous media. For
instance, the random walk for the case of fluid parcels would
read

xj
s�t + 	� = xj

s�t� + v�s�	 + s�xj
s�t� + �xs�
 j , �19�

where

�xs = s�xj
s�t��
 j . �20�

The expression for the case of contaminant particles �with
nonconstant �� is more involved and reads as

xj
c�t + 	� = xj

c�t� +
u�s�

s
	 +

1
�s

̂c�xj
c�t� + �xc�
 j , �21�

where

̂c = �2D�s�s	 �22�

and

�xc =
1
�s

̂c�xj
s�t��
 j . �23�

In �22�, it has been shown that schemes �19� and �21� are
equivalent to Eqs. �13� and �16�, respectively, when coeffi-
cients are sufficiently smooth.

Finally, just as for the governing equations above, the
random-walk schemes must be supplemented by the appro-
priate boundary and initial conditions. For each scheme sepa-
rately, at time t=0, a given �large� number of particles is
attributed to each dx along the discretized domain represent-
ing the column, so to reproduce the initial saturation distri-
bution and the contaminant concentration profile. A constant
saturation level �or concentration� at the inlet is imposed at
each time step by keeping the number of particles located at
x=0 equal to some reference value, i.e., by replacing the
walkers that have either come back to the reservoir �x�0� or
moved toward the interior of the column �x�0�. The Neu-
mann boundary condition at the outlet is imposed by apply-
ing a reflection rule to the diffusive component of the dis-
placement, while particles advected past the outlet during the
same time step are removed from simulation. Note that a
Dirichlet �absorbing� boundary condition at the outlet would
correspond to removing each particle from the ensemble
upon touching the column end.

Given an initial particles configuration, these are dis-
placed at each time step according to the rules prescribed
above. First, the necessary coefficients are computed at as-
signed s�x , t� profile �which is known on the basis of flow
parcels positions�. This allows displacing the walkers at po-
sition xj

s during the time step 	. Then, the s�x , t� profile is
updated. Finally, the walkers at position xj

c are displaced and
their profile updated. Up to a normalization factor, the spatial
profiles are determined by ensemble averaging the walker
locations at a fixed time; the breakthrough curves at a given
position are determined by counting the net number of walk-
ers crossing that location at each time step. Given the non-

linearities and the coupling between the two schemes, the
time step 	 must be chosen sufficiently small to achieve con-
vergence. Moreover, the number of simulated particles must
be sufficiently large to attain a good accuracy in the esti-
mated profiles.

IV. NUMERICAL SIMULATIONS AND COMPARISONS

We compare now the Monte Carlo simulations of the
random-walk schemes proposed in Sec. III to the numerical
solution of the governing equations for s�x , t� and c�x , t�. In
principle, the random-walk schemes are very general and can
account for arbitrary functional forms �even discontinuous�
of the various coefficients. In the following examples, we
will focus on a power-law scaling, which is commonly en-
countered in the empirical constitutive laws, such as the Van
Genuchten or Brooks and Corey laws, and can usually fit
experimental data �3,12,18,25,26�. In particular, for the volu-
metric fluid content, we will assume ��s�=�0s� and v�s�
=v0s�, �0 and v0 being some constant reference values. The
exponents � and � are material parameters and depend on the
details of the microgeometry. Moreover, for the solutes con-
centration evolution, we also assume power-law scaling,
D�s�=D0s�, where D0 is a constant diffusion coefficient and
� is the scaling exponent.

The physical quantities that we examine in the following
are the spatial profiles at a fixed time, which are helpful in
estimating the average displacement and spread of the fluid
flow and of the contaminant species and the breakthrough
curves at the outlet of the column, which allow assessing the
distribution of the times needed to travel from the source to
the measure point. In the following, we assume that the col-
umn has unit length, �=1. Furthermore, we assume a con-
stant saturation level s�0, t�=1 at the inlet and let the fluid
flow infiltrate the column under the combined action of cap-
illarity and gravity.

Figure 1 shows the influence of the power-law scaling
exponent for the capillary diffusivity, �, on the spatial pro-
files of the fluid saturation, s�x , t�, at a fixed time t=1
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FIG. 1. �Color online� Saturation level spatial profiles s�x , t� at
fixed time t=1 for varying �. Numerical integration of Eq. �4� is
displayed as solid lines, Monte Carlo simulation as symbols: �
=0.1 �green dots�, �=0.5 �red circles�, �=1 �blue squares�, and �
=2 �black crosses�. The other coefficients are �0=0.05, v0=0.3, and
�=0.4.
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��=0.1, 0.5, 1, and 2�. Saturation profiles become steeper as
� increases. Figure 2 shows the effects of the exponent of the
velocity scaling law, �, on the spatial profiles s�x , t�: again,
the profiles become steeper as � increases, although the
variation is milder than for the � variation. In both cases, the
agreement between Monte Carlo simulation and numerical
integration of the corresponding equation is excellent.

In the context of underground contaminant transport,
abrupt spatial variations in the physical properties of the tra-
versed media may commonly arise �22,24�. These, in turn,
give rise to sharply varying �i.e., possibly discontinuous�
transport coefficients and strongly affect particles trajecto-
ries. We address one such case by considering a spatially
discontinuous �0: in particular, we assume that at a given
interface between two layers �0 has a sudden step variation,
while being constant in each layer separately. This situation
is usually referred to as a macroscopic heterogeneity �the two
layers are thought to be homogeneous at the local scale� �27�.
All the other parameters are constant across the interface.
The schemes �19� and �21� would be suitable to deal also
with more involved cases, e.g., multiple heterogeneities. Re-
cent experimental results �28� suggest that modeling trans-
port through a sharp interface may require skewed flux cor-
rections �29�. In this work, we do not address this issue and
assume that the fluid flux is adequately described by Eq. �2�,
so that the random-walk schemes above hold. In Figs. 3 and
4, we display the breakthrough curves js�� , t� as a function of
time and the spatial saturation profiles s�x , t� at a fixed time,
respectively. We compare the curves for the case of fluid
flow passing first through the layer at high �0=0.4 and then
through the layer at low �0=0.05 with those where flow is in
the opposite direction. For the boundary conditions consid-
ered here, fluid flow reaches the outlet earlier in the former
case �Fig. 3�. Remark that for the chosen boundary and ini-
tial conditions, the breakthrough curve reaches the saturation
value js�� , t→��=v0. The saturation profiles along the col-
umn show sharp gradients at the interface, while preserving
continuity �Fig. 4�. In both cases, the agreement between
Monte Carlo simulation and numerical integration of the cor-
responding equation is excellent.

Note that for the case of nonconstant velocity v, the
breakthrough curve js�� , t�=v�s�s �x=� does not coincide �up
to a normalization constant� with the saturation s�� , t� mea-
sured at the outlet. This is immediately apparent from Fig. 5,
where we show Monte Carlo simulations and numerical in-
tegrations of the two curves �for the same parameters�. This
point might be relevant while applying inverse problem tech-
niques to the estimate of model parameters on the basis of
experimental data.

Finally, in Figs. 6 and 7, we display the spatial profiles
and the outlet values of the contaminant concentration, re-
spectively, corresponding to a finite-duration step injection.
The computed quantity is c�x , t�s�x , t�, i.e., the product of
concentration and saturation. The spatial profiles are visibly
skewed �Fig. 6� and this behavior is reflected in the long tail
of the concentration measured at the outlet of the column as
a function of time �Fig. 7�. These features result from the
coupling with the saturation and from the nonlinearities in-
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FIG. 2. �Color online� Saturation level spatial profiles s�x , t� at
fixed time t=1 for varying �. Numerical integration of Eq. �4� is
displayed as solid lines, Monte Carlo simulation as symbols: �=0
�green dots�, �=0.5 �red circles�, �=1 �blue squares�, and �=2
�black crosses�. The other coefficients are �0=0.05, v0=0.3, and
�=0.5.
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FIG. 3. �Color online� Breakthrough curves js�� , t� as a function
of time t for discontinuous � coefficient. The interface is located at
xd=� /2. Numerical integration is displayed as solid lines, Monte
Carlo simulation as symbols: �0=0.4 in the left layer and �0

=0.05 in the right layer �red crosses�; �0=0.05 in the right layer and
�0=0.4 in the left layer �blue circles�. The other coefficients are �
=0.2, v0=0.3, and �=0.1.
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FIG. 4. �Color online� Saturation level spatial profiles s�x , t� at
fixed time t=1. Numerical integration is displayed as solid lines,
Monte Carlo simulation as symbols: �0=0.4 in the left layer and
�0=0.05 in the right layer �red crosses�; �0=0.05 in the right layer
and �0=0.4 in the left layer �blue circles�. The other coefficients are
�=0.2, v0=0.3, and �=0.1.
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volved in the flow-transport processes and could possibly
explain the heavy-tailed breakthrough curves reported in the
literature �see, e.g., �7�� for nonsaturated homogeneous po-
rous media.

V. FLUID FLOW THROUGH UNSATURATED
HETEROGENEOUS MEDIA

So far, we have focused our attention on the case of un-
saturated homogeneous porous materials, i.e., materials that
do not display any significant degree of disorder in the pore-
space geometry. The homogeneity hypothesis is mirrored in
the Markovian nature of the associated random walks: all
spatial sites are statistically equivalent and particle sojourns
have the same duration 	 at each of them, so that trajectories
have no memory of past positions. On the other hand, it is
well known that porous media are actually characterized by
heterogeneities at multiple scales, which ultimately affect

fluid and contaminant particles displacements �15,30�.
Consider a fluid flow in a complex �possibly fractal� po-

rous microgeometry. In such a situation, the fluid parcels
tend to flow in preferential channels �20�, so that the distri-
bution of the sojourn times at each site is necessarily non-
uniform, as suggested by experimental evidence �31�. A de-
tailed account of Richards’ equation inadequacy to explain a
number of fluid flow experiments can be found in �18,32–34�
and references therein. In recent years, some extensions of
the Richards equation have been proposed to take into ac-
count these phenomena �16,18,35�. In particular, it has been
conjectured that the wetting front in infiltration processes
through nonhomogeneous aggregated media remains immo-
bile for long-time periods and the structural hierarchy of the
soil structure is a primary cause of non-Fickian dynamics
�18,36�. An expedient means of incorporating such effects
into the random walk described by Eq. �7� is to allow for the
possibility of trapping events of random duration after each
displacement �of duration 	�. While several hypotheses can
be made on the interplay between displacements and reten-
tion times, each corresponding to a distinct conceptual pic-
ture of the underlying physical system �13,37�, here we fol-
low the lines of a continuous time random-walk approach
called fractal mobile-immobile model �f-MIM� �38�, which
suitably generalizes the discrete-time process defined by Eq.
�7�.

Within this framework, it is commonly assumed that trap-
ping times between displacements obey “fat-tailed” �power-
law� distributions �s�t�� t−1−�, ��0. If the decay is suffi-
ciently slow, it is not possible to single out a dominant time
scale �i.e., the mean of the pdf is not defined� and particles
can thus experience a large variation of sojourn times, hence
a broad spectrum of effective velocities at each spatial site
�15�. Note that the precise functional shape and parameter
values for �s�t� should condense the fine details of the pore
geometry and also of the internal repartition of the wetting
fluid, in the case of unsaturated flow.
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FIG. 5. �Color online� Breakthrough curve �blue circles� and
saturation level �red crosses� at the column outlet, normalized so to
have unit maximum. Solid lines correspond to numerical integra-
tion, symbols to Monte Carlo simulation. A discrepancy between
the profiles is apparent for nonconstant velocities v. The coefficients
are �0=0.05, �=0.4, v0=0.3, and �=0.1.
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FIG. 6. �Color online� Contaminant concentration profiles
c�x , t�s�x , t� at a fixed time t=1, for step injection from t0=0 to tc

=0.1. The simulation parameters are �0=0.05, �=0.4, v0=0.3, �
=0.2, D0=0.1, and �=2. Monte Carlo simulations are shown as
symbols �blue circles at t=0.5, red crosses at t=1�, numerical inte-
gration as solid lines.
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FIG. 7. �Color online� Contaminant profile c�� , t�s�� , t� mea-
sured at the column outlet, as a function of time, for step injection
from t0=0 to tc=0.1. The simulation parameters are �0=0.05, �
=0.4, v0=0.3, �=0.2, D0=0.1, and �=2. Monte Carlo simulations
are shown as symbols, numerical integration as solid line.
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More precisely, assume

�s�t� = 	−1/���t/	1/�� , �24�

0���1, with � being a pdf concentrated on R+, with sur-
vival probability ��t�=t

+���t��dt�=�t−� /��1−��+K�t�, K
being integrable. Here, ��0 is a scaling factor that defines
the strength of the trapping events. While in principle, �
could depend on x , t �39� and even on the particles concen-
tration, here, for sake of simplicity, we assume that it is
constant.

Within the framework of the continuous-time random-
walk models as applied to porous media, a power-law trap-
ping times distribution is usually introduced on a phenom-
enological basis, so to allow fitting the slowly �i.e., power-
law� decaying tails of experimentally measured breakthrough
curves. Nonetheless, several attempts have been made over
the years with the goal of providing a solid mathematical and
physical justifications of the appearance of such distribution
�8,15,18,40�.

In particular, we expect that the geometrical structure of
the domain occupied by water in an unsaturated medium can
be very important. It will depend on the saturation, but also
on the past history of the medium �wetting or drainage� �41�.
After a previously saturated medium has been dried, small
films of water are present everywhere. On the other hand,
imbibition may result into an entirely wet connected subset,
together with a dry connected subset �41�. In this case, the
flow is mostly dominated by the more filled pores, but films
where the flow velocity is very slow can retain the tracers.
Even though such films are difficult to detect, electric con-
ductivity measurements show that their impact may be sig-
nificant �42�. At low saturations, these films negligibly con-
tribute to hydraulic conductivity �hence to rapid mass
transport�, but significantly to the porous medium electric
conductivity. As such, they can act as retention zones for
both fluid parcels and tracer particles. These films may also
occur in unsaturated media that are not especially heteroge-
neous from the macroscopic point of view, such as sand col-
umns, where memory effects have been observed �7�. We
nevertheless expect small-scale heterogeneities, related, e.g.,
to grain surfaces, to possibly influence the dynamics of fluid
films �43�. Large-scale heterogeneities across distinct geo-
logical units also determine the distribution ��t� because of
their different physical properties and/or flow conditions
�8,29�. The complex interaction of all these phenomena ulti-
mately affects the functional behavior of � with respect to
the geometrical and dynamical properties of the porous me-
dium, a question that surely deserves further solid experi-
mental and theoretical investigations.

Consider now the random walk defined by Eq. �7�. At the
end of each displacement, particles wait at the visited spatial
site for a random time obeying the pdf �s�t�: these sojourn
times can be very long as compared to the time scale 	.
Because of trapping events, the number of jumps performed
by each walker in a given time span may greatly vary: this is
an effective means of describing heterogeneous media. We
denote by Pm�x , t� and Pi�x , t� the densities of mobile and
immobile fluid parcels, respectively, and by P= Pm+ Pi the
total density.

Let xj,n be the position of walker j just after the nth step,
which begins at time tj,n. This “mobile” step is followed by
the nth “immobile” period, with duration 	1/�Wn, where the
Wn are independent random variables drawn from � �so that
the pdf of 	1/�Wn is �s�. Then we have

xj,n+1 = xj,n + A	 + �2B	
n �25�

and

tj,n+1 = tj,n + 	 + 	1/�Wn. �26�

As a particular case, when �=0, the second equation reduces
to tj,n+1= tj,n+	 plus a random contribution that vanishes in
probability when 	→0 and we recover the homogeneous
random walk defined by Eq. �7�. When A and B are uniform
and constant, in the hydrodynamic limit �	→0�, the particles
dynamics above defines a linear fractal-MIM model �38,44�,
a generalization of the standard �linear� MIM model �45�. In
this case, it can be shown via subordination that P satisfies
an equation akin to Eq. �9�, except that the left-hand side is
replaced by ��t+��t

��P, with �t
� being a Caputo derivative of

order � �38� �details are provided in Appendix A�.
Unsaturated flow in porous media can be characterized by

droplets, slug-flows, Darcy’s flow, or all of the above. Cor-
respondingly, A and B may depend on P or Pm. In highly
unsaturated materials, we may conjecture that smaller pores,
previously wetted and full of trapped fluid, modify the sur-
face properties of larger pores where mobile fluid flows, so
that A and B may depend also on Pi. For sake of simplicity,
we have neglected here other possibilities: for instance, ad-
ditional nonlinearities would be introduced at strong solutes
concentrations �46�. In all such cases, it is more convenient
to derive the governing equation for the fluid parcels density
by resorting to the relation between Pm�x , t� and Pi�x , t� as in
�44�.

We make use of the ancillary pdf f�x , t� for a walker of
just being released from a trap at x, at time t, and denote by
r�x , t� a possible source term. Particles that are mobile at
time t were either released from a trap or came from the
source at time t− t�, with 0� t��	. We assume that the dif-
fusive step of the displacement occurs at the end of the mo-
bile period �see the discussion in �39��. Moreover, during the
time interval �t− t� , t�, the motion of a walker is determined
by the velocity field A: we denote the traveled distance by
ux,t,t�.

Hence, we have

Pm�x,t� = �
0

	

�f + r��x − ux,t,t�,t − t��dt�, �27�

which implies

�f + r��x,ux,t,	,t − 	� = 	−1Pm�x,t� + O�	� �28�

provided that A �hence u� and f +r are smooth �47�.
The density Pi also depends on f +r: any immobile par-

ticle at time t was trapped at a time t�� t at the end of a
mobile step that began at time t− t�−	 and involved a single
diffusive step �2B	
. Denoting by y the amplitude of this
latter step, we have
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Pi�x,t� = �
y�R

dy�
0

t

dt���t�/	1/����2B	�y�

��f + r��x − y − ux−y,t−t�,	,t − t� − 	� . �29�

Here, ��t� /	1/�� represents the probability for a trapping du-
ration to be larger than t� and ��2B	�y�=1 /�2B	��y /�2B	�
denotes the pdf of 
, � being the normal distribution. More-
over, B may be nonuniform and depend on the starting point
of each jump �x−y in Eq. �29��. In the following, we will
assume that A and B depend on �x , t� either directly or be-
cause they are functions of densities such as Pm, Pi, or P.
Bounded domains �such as those considered later in numeri-
cal simulations� are dealt with by setting absorbing boundary
conditions. In the integrals over R, as in Eq. �29�, this corre-
sponds to letting the particle densities �f +r, Pm, or Pi� vanish
at the exterior of the domain.

Denoting time convolutions �in R+� by �, i.e., F�G�t�
=0

t F�t− t��G�t��dt�, and recalling that � is bounded by 1,
we make use of approximation �28� in Eq. �29� and obtain

Pi�x,t� = 	−1��t/	1/�� � �
y�R

Pm�x − y,t���2B�x−y�	�y�dy

+ O�	� . �30�

In the hydrodynamic limit,

�
y�R

Pm�x − y,t���2B�x−y�	�y�dy → Pm�x,t�

�due to lemma 4 of Appendix C� and the �time� convolution
of kernel 	−1��t /	1/�� converges to the fractional integral
�I0,+

1−� �see Appendix A�, hence

Pi�x,t� = �I0,+
1−�Pm�x,t� , �31�

which provides a relation between Pm and Pi. We can iden-
tically rewrite as

P�x,t� = �Id + �I0,+
1−��Pm�x,t� . �32�

Then, the inversion of the term Id+�I0,+
1−� yields �44�

Pm�x,t� = �Id + �I0,+
1−��−1P�x,t� . �33�

The hydrodynamic limit of the walkers flux F�x , t� �corre-
sponding to the dynamics in Eqs. �25� and �26�� is derived in
Appendix B and reads

F = �A − �xB�Pm. �34�

This follows from the fact that particles contribute to the
flow only when being in the mobile phase Pm. Finally, mass
conservation �tP=−�xF+r implies

�tP = − �x�A − �xB�Pm + r , �35�

which is the desired governing equation for transport pro-
cesses with trapping events �48�. Equation �35�, rather than
being simply postulated as a phenomenological “fractional
derivatives generalization” of the standard Richards equa-
tion, has been here derived as the hydrodynamic limit of an
underlying nonlinear and non-Markovian stochastic process
with a definite physical meaning. Remark that Eq. �35� is in

principle nonlinear, as the coefficients A and B may depend
on P, Pm, or Pi, as is the case for unsaturated flows. More-
over, Eq. �35� contains a memory kernel �via the relation
�32� between Pm and P�: in other words, because of the
slowly decaying time kernel, knowledge of the past history
of the particle is required in order to determine its future
displacement. Therefore, the fluid parcels density is affected
at the same time by nonlinearities and memory effects: the
relative strength of these components ultimately determines
the fate of the flow in the traversed media.

Since Eq. �35� is written in a “Fokker-Planck form,” i.e.,
with a term of the kind �x�xBPm, the corresponding conser-
vative �Fickian� formulation for the flux would need the in-
troduction of a drift coefficient correction, A, analogous to
the one used for the standard Richards equation in homoge-
neous media.

The behavior of fluid flow with nonlinear coefficients and
retention times is illustrated in Figs. 8 and 9. In particular,
we proceed to compare the Monte Carlo simulations of the
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FIG. 8. �Color online� Unsaturated media with trapping pro-
cesses: fluid flow profiles P at time t=2.25�10−2. For all curves,
�=0.6 and �=1. Red crosses: a0=4, a=0.25, b0=0.2, b=0.5. Green
dots: a0=1, a=0.25, b0=0.2, b=0.5. Blue squares: a0=0.1, a
=0.25, b0=0.5, b=0.5. Black circles: a0=5, a=0.25, b0=0.5, b
=0.5. The corresponding numerical integration curves are plotted as
solid lines.
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FIG. 9. �Color online� Unsaturated media with trapping pro-
cesses: fluid flow profiles at time t=2.25�10−2. For all curves, �
=0.4 and �=1. Black triangles �P� and green dots �Pm�: A
=a0�Pm�a and B=b0�Pm�b, with a0=2, a=0.4, b0=0.4, b=0.6. Blue
squares �P� and red crosses �Pm�: A=a0�P�a and B=b0�P�b, with
a0=6, a=0, b0=0.2, b=0.5. The corresponding numerical integra-
tion curves are plotted as solid lines.

ZOIA, NÉEL, AND CORTIS PHYSICAL REVIEW E 81, 031104 �2010�

031104-8



random walks described by Eqs. �26� and �25� �in the hydro-
dynamic limit� to the numerical integration of the governing
equations �31� and �35�. Monte Carlo simulations proceed
along the same lines as for homogeneous media. Concerning
the numerical integration, we found more expedient to recast
Eq. �35� in the equivalent formulation

��t + �Dt
��Pm = − �x�A − �xB�Pm + r , �36�

with Dt
� being a Riemann-Liouville fractional derivative, de-

fined in Appendix A. Once Eq. �36� has been solved for Pm,
P is easily computed from Eq. �32�. We discretized Eq. �36�
according to a semi-implicit scheme as in �44�, so to avoid
possible instabilities connected with nonlinearities.

In Fig. 8, we display the total fluid flow density P at a
given time, for different values of the coefficients. We make
the hypothesis that A and B depend on the mobile phase Pm,
with a power-law scalings A=a0�Pm�a and B=b0�Pm�b �simi-
larly as done for the homogeneous media�. The initial con-
dition is a fluid pulse located at x0=� /2. Absorbing boundary
conditions are set at either end of the medium. In Fig. 9, we
display the total fluid flow density P as compared to the
mobile density Pm, when the parameters A and B separately
depend �with a power-law scaling� on the mobile or total
fluid density. Boundary and initial conditions are the same as
in the previous example. Both figures show a very good
agreement between Monte Carlo simulation and numerical
integration.

Finally, replacing Eq. �24� with �s�t�=	��t /	� yields Pi

=�Pm when � has a finite average �, i.e., when the pdf
decays sufficiently fast at long times. In this case, Eq. �35�
holds with Pm= �1+��−1P and we have

�1 + ���tP = − �x�A − �xB�P + �1 + ��r , �37�

which is a nonlinear Fokker-Planck equation with a retarda-
tion factor � �39�.

VI. DISCUSSION AND CONCLUSIONS

In this work, we have addressed nonlinear coupled flow
and transport processes in variably saturated porous media.
After briefly recalling the governing equations for homoge-
neous materials, we have shown how to describe fluid and
solute parcel trajectories by resorting to a unified random-
walk framework. Monte Carlo simulations of the underlying
microscopic particle dynamics have been successfully com-
pared to the numerical solutions of the governing equations.

We have then introduced a nonlinear f-MIM CTRW
scheme aimed at describing fluid flow through variably satu-
rated heterogeneous media. The effects of spatial heteroge-
neities are mirrored in the possibility of long �power-law
distributed� sojourn times of the flowing particles at each
visited site. The corresponding governing equations have
been derived and their numerical integration has been then
compared to the Monte Carlo simulations of the walkers dy-
namics. We remark that the proposed f-MIM generalization
of nonlinear transport equations is not unique in any respect.
Indeed, other possible approaches have been illustrated, e.g.,
in �49,50� and in �51� by means of a generalized Montroll-

Weiss master equation with a jump pdf depending on the
walkers density.

Although focus has been given to fluid flow through het-
erogeneous unsaturated materials, the proposed nonlinear
f-MIM scheme is fairly general and can be straightforwardly
applied to the coupled solute-transport problem as well.
Similarly, as fluid parcels can be affected by the irregular
geometry of the traversed material, the solutes concentration
can also experience the effects of inhomogeneities due, for
instance, to the chemical-physical exchanges of the solute
species with the surrounding environment �52�. In analogy
with the case of fluid flow dynamics, we may then take into
account these contributions by introducing a power-law dis-
tribution �c�t�� t−1−�, with ��0, for the waiting times of
contaminant particles between displacements. This pdf char-
acterizes the sorption times of the transported species within
the medium. In general, there is no reason to suppose that the
exponent � coincides with �. A similar distinction between
flow- and solutes-induced retention times has been previ-
ously introduced in �15,52,53� within a �linear� CTRW
framework.

In summary, the solutes concentration in heterogeneous
variably saturated materials may display deviations from
standard Fickian behavior due to three concurrent processes:
�i� the space- and time-varying saturation profile within the
medium �nonlinear effects�, �ii� the spatial heterogeneities
experienced by the fluid flow �memory effects�, and �iii� the
spatial heterogeneities experienced by the solutes �memory
effects�. As experimental data such as contaminant profiles
or breakthrough curves are usually limited and/or affected by
measurement noise, distinguishing the effects of spatial het-
erogeneities on flow and transport processes separately is an
highly demanding task and many research efforts have been
recently devoted to this aim �see, e.g., �52� and references
therein�. At present, it is therefore an open question whether
these distinct contributions could be separately analyzed on
the basis of measured data or rather described by an effective
CTRW model: we will discuss in detail this topic in a forth-
coming paper.

As a final remark, note that in this work we have confined
our attention to the migration of nonreacting �passive� spe-
cies. Nonetheless, all the random-walk algorithms introduced
here could be easily extended so as to describe the transport
of radionuclides by computing the decay time before simu-
lating the particle trajectory �54�.

ACKNOWLEDGMENTS

A.C. was supported by a grant �Order No. 7220� from the
Swiss National Cooperative for the Disposal of Radioactive
Waste �Nagra�, Wettingen, Switzerland: the support was pro-
vided to Berkeley Laboratory through the U.S. Department
of Energy Contract No. DE-AC02-05CH11231. M.C.N.
thanks the Groupement MoMaS, Modélisation Mathéma-
tique et Simulations numériques liées aux problémes de ges-
tion des déchets nucléaires �PACEN/CNRS, ANDRA,
BRGM, CEA, EDF, and IRSN�. We thank S. Finsterle and
Ph. Montarnal for interesting scientific discussions.

APPENDIX A: FRACTIONAL INTEGRALS AND
DERIVATIVES

The fractional integral I0,+
� f of order ��0 is
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I0,+
� f�t� =

1

�����0

t

�t − t���−1f�t��dt�,

which is a generalization of the usual multiple integrals to
arbitrary �positive� order �55,56�. The Caputo fractional de-
rivative �t

�f of order n���n+1 is

�t
�f�t� = I0,+

n+1−��t
n+1f�t� ,

with n being an integer �55,57,58�. The Riemann-Liouville
fractional derivative Dt

� is instead defined as

Dt
�f�t� = �t

n+1I0,+
n+1−�f�t�

for n���n+1. Note that the Riemann-Liouville derivative
applies to slightly more general functions than Caputo’s and
when both can be applied �i.e., for differentiable functions f�,
we have Dt

�f�t�=�t
�f�t�+ t−�f�0+� /��1−�� for 0���1.

In Sec. V, we use the following lemma:
Lemma 1. �i� Suppose � is a positive valued, decreasing

function defined on R+, with ��0�=1 and ��t�= t−� /��1
−��+K�t�, with K integrable and 0���1. Then, the con-
volution of kernel 	−1��t /	1/�� converges to I0,+

� in Lp�R+�,
with 1� p�+�, when 	→0.

�ii� If � is integrable, then the convolution of kernel
	−1��t	−1� converges to R+��t�dtId.

Proof. Due to the above definitions, the convolution of
kernel 	��1−��−1�t /	1/��−� is exactly I0,+

1−�. Moreover, the
convolution of kernel 	−1/�K�t /	1/�� �as a mapping of
Lp�R+�� is an approximation to R+K�t�dtId �55,56�, so that
the convolution of kernel 	−1K�t /	1/�� tends to zero when
	→0 �due to ��1�, which proves point �i�. Point �ii� is a
direct consequence of the Refs. �55,56� concerning approxi-
mations to Id.

Remark. With ���y�=1 /���y /��, the space convolution
�denoted by �, with, f �g�x�=Rf�x−x��g�x��dx�� of kernel
�� converges to Id when �→0 �55,56�, in Lp, and we have
���G�x�→G�x� pointwise when G is a continuous function.

APPENDIX B: PROBABILITY CURRENT

We would like to prove Eq. �34�. Let us first introduce the
probability current of the random walk defined by Eqs. �26�
and �25�. The current is the probability for a walker to cross
a given point x to the right during a time interval dt, minus
the probability of crossing to the left, divided by dt. Upon
multiplication by the total number of walkers involved in the
random walk, it yields the average number of particles that
cross x per unit time.

Note that a walker that is not at the end of the current
mobile period crosses x during �t−dt , t�, provided that it was
released from the trap at time t− t� �with 0� t��	�, between
x−ux,t,t�−A�x−ux,t,t� , t− t��dt and x−ux,t,t�, if A�0. This oc-
curs with probability

�
0

	

�f + r��x − ux,t,t�,t − t��A�x − ux,t,t�,t − t��dtdt�

� Pm�x,t�A�x,t�dt ,

when 	→0, and the walker crosses x in the direction �dic-

tated by the sign of A�. Moreover, a walker crosses x by a
diffusive step directed to the right with probability y�0�f
+r��x−y−ux,t,	 , t−	���y /�2	B�x−y��dy per unit time,
where ��z�=z

+���y�dy. This latter probability approximates
	−1y�0Pm�x−y , t���y /�2	B�x−y��dy when 	→0 due to
Eq. �28�. Collecting finally contributions of jumps to the left,
the probability current of the random walk in Eqs. �26� and
�25� is

PmA�x,t� + 	−1�
y�0

Pm�x − y,t���y/�2	B�x − y��

− Pm�x + y,t���y/�2	B�x + y��dy .

Appendix C shows that the above integral converges to
−�xBPmRy2��y�dy due to the rapid decrease at infinity of �
and �. Hence, in the hydrodynamic limit, the probability
current is given by Eq. �34�.

APPENDIX C: TECHNICAL LEMMA

The above result is obtained by applying lemma 2 below,
with G�x�y�= Pm�x�y , t� recalling that Pm�z , t�=0 for z
outside the studied domain D0.

Lemma 2. Let � be a differentiable function over R+, with
y��y� integrable. Suppose also that B, as a function of space,
has a derivative B� satisfying �yB��x+y� /B�x+y���2, pro-
vided that x and x+y belong to the bounded domain
D0. Suppose then that G vanishes at the exterior of D0,
and has a bounded derivative, and set I�

=	−1y�0G�x�y���y /�2	B�x�y��dy. Then, the quantity
−I++ I− converges to −4�x�G�x�B�x��0

+�z��z�dz when 	
→0.

Remarks. �i� When � is an even function satisfying ��z�
=−���z� for z�0, we have 40

+�z��z�dz=Rz2��z�dz.
�ii� The condition for B in lemma 2 is very restrictive,

more especially if we want to address infinite domains
�which is not the case here�. It can be significantly weakened
on the basis of lemma 2, provided B� /B remains uniformly
bounded.

Proof of Lemma 2. We first show that �i� −I++ I− takes the
form 2�−10

+�F��z���z�dz, F being a derivable function sat-
isfying F�0�=0. Then, �ii� we apply lemma 3 further below.

In view of �i�, let us fix x. The hypotheses of the lemma
allow for two changes of variables z=g��y� /�2	 in I+ and I+,
with g��y�=y /�B�x�y�. The inverse of g� is h�, with

g�� �y� = 1/�B�x � y��1 � yB��x � y�/�2B�x � y��� ,

h�� �Z� = �B�x � h��Z���1 �
h��Z�B��x � h��Z��

2B�x � h��Z�� �−1

,

and h��0�=0. With these notations, set �=�2	 and

F�Z� = G�x − h−�Z��h−��Z� − G�x + h+�Z��h+��Z� . �C1�

Then, letting y=h���z� in I� yields −I++ I−
=2�−10

+�F��z���z�dz.
Now, to apply lemma 3, note that F��0�=−2G��x�B�x�

+G�x��h−��0�−h+��0�� and that h�� �Z�=a��b�, with
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a� = �
h�� �Z�B�x � h��Z��

2�B�x � h��Z��
�1 �

h��Z�B��x � h��Z��
2B�x � h��Z�� �−1

and

b� =
�B�x � h��Z��

�1 �
h��Z�B��x � h��Z��

2B�x � h��Z�� �2

c�

2B�x � h��Z��2 ,

with

c� = h�� �Z�BB��x � h��Z�� � h�h�� �Z�BB�

��x � h��Z�� � h��Z�h�� �Z�B�2�x � h��Z�� .

This implies h�� �0�= �B��x�, so that F��0�=−2�GB���x�.
Hence, lemma 2 is a consequence of the lemma 3 below,
which itself comes from lemma 3 in �39�.

Lemma 3. Let � be a bounded function, with y��y� inte-

grable over R+. Then, for any integrable function F, differ-
entiable at point 0 and satisfying F�0�=0, with F�y� /y uni-
formly bounded, the expression

�−1�
0

+�

F��z���z�dz

converges to F��0�0
+�z��z�dz, when �→0. In Sec. V, we

make use of the following statement.
Lemma 4. Let G be a continuous bounded function, van-

ishing at the exterior of the bounded domain D0, � being
a pdf. Suppose also that B is as in lemma 2. Then, I
=RG�x−y���y /�2	B�x−y��dy /�2	B�x−y�→G�x� when 	
→0.

As in the proof of lemma 2, the change of variables
g�y�=y /�B�x−y� has an inverse, which we denote by h.
Thus, we have I=RG�x−h��2	z����z�dz. Hence, the remark
of Appendix A proves the statement.
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